NORMAL FUNCTIONALS ON LIPSCHITZ SPACES ARE WEAK<sup>*</sup> CONTINUOUS
نویسندگان
چکیده
Let $\operatorname{Lip}_0(M)$ be the space of Lipschitz functions on a complete metric $M$ that vanish at base point. We show every normal functional in $\operatorname{Lip}_0(M)^\ast$ is weak$^*$ continuous, answering question by N. Weaver.
منابع مشابه
Lipschitz and uniformly continuous Reducibilities on Ultrametric polish spaces
We analyze the reducibilities induced by, respectively, uniformly continuous, Lipschitz, and nonexpansive functions on arbitrary ultrametric Polish spaces, and determine whether under suitable set-theoretical assumptions the induced degree-structures are well-behaved.
متن کاملOrder continuous linear functionals on non-locally convex Orlicz spaces
The space of all order continuous linear functionals on an Orlicz space L defined by an arbitrary (not necessarily convex) Orlicz function φ is described.
متن کاملSpaces of Lipschitz Functions on Metric Spaces
In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.
متن کاملLipschitz Spaces on Compact Manifolds
Let f be a bounded function on the real line IF!. One may characterize the structural properties off by the modulus of smoothness w(t,f) = sup{lf (4 -f( y)l; x, y E 08, I x y I < t>, and, if w(t) is a continuous nondecreasing function of t > 0 such that w(O) = 0, by the Lipschitz class Lip(w) which is the set of all continuous functions such that su~~<~<i w(t, f)/o(t) < 00. It is possible to ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of The Institute of Mathematics of Jussieu
سال: 2021
ISSN: ['1474-7480', '1475-3030']
DOI: https://doi.org/10.1017/s147474802100013x